Skip to main content

Contact

Proprietor:

Jeffrey S Strickland, Ph.D.
jeff@Humalytica.com
jeff@simulation-educators.com
Connect with Jeff on LinkedIn
Connect with Jeff on Google+


Work history


Clarity Insights
Senior Analytics Consultant, 2017 - Present
Senior Predictive Modeler for an undisclosed client in the Financial and Insurance Industry. Performs modeling projects from cradle to grave, including business case and modeling objective development, requirements collection and analysis, model construction, performance evaluation, economic evaluation, model deployment and model validation support. Construct logistic regression model, neural network models, ensembles and uplift (net-lift) models. Programs in SAS and R, uses SAS Enterprise Miner and IBM SPSS Modeler.
Clarity Solution Group
Senior Analytics Consultant, 2012 - 2017
Senior Predictive Modeler for an undisclosed client in the Financial and Insurance Industry. Performs modeling projects from cradle to grave, including business case and modeling objective development, requirements collection and analysis, model construction, performance evaluation, economic evaluation, model deployment and model validation support. Construct logistic regression model, neural network models, ensembles and uplift (net-lift) models. Programs in SAS and R, uses SAS Enterprise Miner and IBM SPSS Modeler.
Northrop Grumman
Senior Operations Research Analyst, 2008 - 2012
Technical Director for the Threat Modeling Center (TMC) at the Missile Defense Agency (MDA). The TMC constructs all authentic threat models for every MDA simulation; Technical Director for Verification and Validation (V&V) of Modeling and Simulation (M&S) at the MDA. The V&V Directorate performed V&V oversight for all MDA models and simulations.
University of Alabama in Huntsville
Principal Research Scientist, 2007 - 2008
Technical Consultant for the Modeling and Simulation of NASA's Aries I Crew Launch Vehicle's Reliability and Launch Availability. Ares I was part of the Constellation Program before it was cancelled by the 201 NASA Authorization Bill. Ares I performed a successful launch at Cape Canaveral before the program was canceled.
SPARTA, Inc.
Chief Scientist, 2005 - 2007
Provides Scientific oversight for all modeling and simulation projects. Performed Reliability, Availability and Maintainability (RAM) design modeling simulation for Warrior Extended Range Multi-Purpose (ERMP) Unmanned Aerial Vehicle( UAV), the Hunter Class III UAV, the CLASS II UAV. Also preforms studies and analysis of space surveillance strategies for the US Army Space and Missile Defense Command.
US Army Logistic Management University
Course Director, 2002 - 2005
Course Director for the Operations Research and Systems Analysis (ORSA) Military Application Course (MAC) I resident course. Developed an ACE accredited curriculum for joint service ORSA training. Instituted SAMRT Technologies and classrooms.
United States Military Academy
Assistant Professor, 1991 - 2002
Mathematics and Operations Research Instructor

Popular posts from this blog

Time Series Analysis using iPython

Time Series Analysis using iPython In this example, we will examine ARMA and ARIMA models with Python using the Statsmodels package. This package can be downloaded at  http://statsmodels.sourceforge.net/stable/index.html . Autogressive Moving-Average Processes (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA) can be called from the tsa (Time Series) module from the Statamodels package. Note: I am not as expert in time-series analysis as I am in other areas of Analytics, so if you find errors I would be happy to know about them and correct them. Introduction ARIMA models are, in theory, the most general class of models for forecasting a time series, which can be made to be “stationary” by differencing (if necessary), perhaps in conjunction with nonlinear transformations such as logging or deflating (if necessary). A random variable that is a time series is stationary if its statistical properties are all constant over time. A stationary series has no trend

Neural Networks using R

Neural Networks using R By Jeffrey Strickland on May 13, 2015 The intent of this article is not to tell you everything you wanted to know about artificial neural networks (ANN) and were afraid to ask. For that you’ll have to ask someone else. Here I only intend to tell you how you might use R to implement an ANN model. One thing I will say is that I rarely use an ANN. I have found them to work best in an ensemble model (using averaging) with logistics regression models. Using neuralnet neuralnet depends on two other packages: grid and MASS ( Venables and Ripley, 2002). It is used is primarily with functions dealing with regression analyses like linear models ( lm ) and general linear models ( glm ). As essential arguments, we must specify a formula in terms of response variables ~ sum of covariates and a data set containing covariates and response variables. Default values are defined for all other parameters (see next subsection). We use the data set infert that i

Where Did All The Thinking Go?

Where Did All The Thinking Go?   “Thinking is the hardest work there is, which is probably the reason so few engage in it.” ― Henry Ford What Do We Really Want? We live in a fast-food society, at least in the USA. We want what we want, now! We prefer not to work too hard for it, if we work at all, and many of us have a sense of entitlement. We believe all of us should go to college and get our degree, but not much effort should be expended in doing so. After all, we have lots of cheeseburgers to munch on and many parties to attend. “Five percent of the people think; ten percent of the people think they think; and the other eighty-five percent would rather die than think.” ― Thomas A. Edison When I was teaching, even at the United States Military Academy, I ran into this attitude often. Students wanted to do the minimum amount of work to get by with a passing grade. In contrast were the non-traditional students taking evening classes after working a fulltime job dur